1,257 research outputs found

    Cosmic ray composition between 10 to the 15th power - 10 to the 17th power eV obtained by air shower experiments

    Get PDF
    Based on the air shower data, the chemical composition of the primary cosmic rays in the energy range 10 to the 15th power - 10 to the 17th power eV was obtained. The method is based on a well known N sub e-N sub mu and N sub e-N sub gamma. The simulation is calibrated by the CERN SPS pp collider results

    A new method to determine the chemical composition of the cosmic rays beyond 10 to the 15th power eV

    Get PDF
    The chemical composition of primary cosmic rays beyond 10 to the 15th power eV could not be measured by the direct method. A more sensitive method to determine the chemical composition is proposed. The method was checked by simulation and compared with existing data on N sub e-N sub mu and N sub e-N sub gamma

    Power Spectra of X-ray Binaries

    Full text link
    The interpretation of Fourier spectra in the time domain is critically examined. Power density spectra defined and calculated in the time domain are compared with Fourier spectra in the frequency domain for three different types of variability: periodic signals, Markov processes and random shots. The power density spectra for a sample of neutron stars and black hole binaries are analyzed in both the time and the frequency domains. For broadband noise, the two kinds of power spectrum in accreting neutron stars are usually consistent with each other, but the time domain power spectra for black hole candidates are significantly higher than corresponding Fourier spectra in the high frequency range (10--1000 Hz). Comparing the two kinds of power density spectra may help to probe the intrinsic nature of timing phenomena in compact objects.Comment: 21 pages, 10 figures, to appear in Astrophysical Journa

    A three-dimensional Monte Carlo calculation of the photon initiated showers and Kiel result

    Get PDF
    The Kiel experimental results indicate an existence of the ultra high-energy gamma-rays coming from Cyg. X-3. However the result indicates that the number of the muons included in the photon initiated shower is the same as the number included in the proton initiated showers. According to our Monte Carlo calculation as shown in the graph of underpart, the number of muons included in the photon initiated showers should be less than 1/15 of the photon's. The previous simulation was made under one dimensional approximation. This time the result of three dimensional calculation is reported

    Neutrino mass and the Void structure of our Universe

    Get PDF

    Angular and Abundance Distribution of High-energy Gamma Rays and Neutrons Simulated by GEANT4 Code for Solar Flares

    Full text link
    In the solar flare observed on June 3, 2012, high energy gamma-rays and neutrons were observed. The event includes a remarkable feature of a high neutron/gamma-ratio in the secondary particles. We have examined whether this high n/γ\gamma-ratio can be explained by simulation. As a result of simulations using the GEANT4 program, the high n/γ\gamma-ratio may be reproduced for the case that helium and other heavy ions were dominantly accelerated in the flare.Comment: submitted to the Proceeding of The 20th International Symposium on Very High Energy Cosmic Ray Interaction (ISVHECRI 2018, Nagoya, Japan), Europian Physics Journa
    corecore